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SHeRLoc: Synchronized Heterogeneous Radar
Place Recognition for Cross-Modal Localization

Hanjun Kim1, Minwoo Jung2, Wooseong Yang2 and Ayoung Kim2˚

Abstract—Despite the growing adoption of radar in robotics,
the majority of research has been confined to homogeneous
sensors, overlooking the integration and cross-modality chal-
lenges inherent in heterogeneous radar. This leads to significant
difficulties in generalizing across diverse radar types, with
modality-aware approaches that could leverage the complemen-
tary strengths of heterogeneous radar remaining unexplored. To
bridge these gaps, we propose SHeRLoc, the first deep network
tailored for heterogeneous radar, which utilizes radar cross-
section polar matching to align multimodal radar data. Our hi-
erarchical optimal transport-based feature aggregation generates
rotationally robust multi-scale descriptors. By employing FFT-
similarity-based data mining and adaptive margin-based triplet
loss, SHeRLoc enables FOV-aware metric learning. SHeRLoc
achieves an order of magnitude improvement in heterogeneous
radar place recognition, increasing recall@1 from below 0.1
to 0.9 on a public dataset and outperforming state-of-the-art
methods. Also applicable to LiDAR, SHeRLoc paves the way for
cross-modal place recognition and heterogeneous sensor SLAM.
The supplementary materials and source code are available at
https://sites.google.com/view/radar-sherloc.

Index Terms—Localization, SLAM, Range Sensing

I. INTRODUCTION

PLACE recognition (PR) is a cornerstone of robust lo-
calization in autonomous driving, enabling vehicles to

identify previously visited locations. Traditionally, cameras
and LiDAR have dominated PR due to their rich data rep-
resentations [1, 2]. However, their susceptibility to adverse
conditions has shifted attention to radar, which offers unpar-
alleled robustness by penetrating fog, rain, and snow [3, 4].
Early radar-based PR mostly leveraged 360˝ spinning radars,
establishing a foundation for robust localization [5–9]. Build-
ing on this foundation, compact system-on-a-chip (SoC) radars
have been integrated into PR tasks [10–12]. More recently,
4D radars, capable of capturing range, azimuth, elevation, and
radial velocity, have also been adopted in radar PR [13, 14].
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Fig. 1: SHeRLoc generates nv views from spinning radar scans to
align with the narrow FOV of 4D radar, while bridging the modality
gap across heterogeneous radars through RCS polar matching.

Despite the growing adoption of radar in robotics, the
majority of research has been confined to homogeneous sensor
systems, overlooking the integration and cross-modality chal-
lenges inherent in heterogeneous radar technologies. Notably,
different radar systems operate under distinct sensing princi-
ples, leading to substantial variations in noise characteristics,
point density, and field of view (FOV). As a result, methods
designed for homogeneous radar systems fail to generalize
across diverse radar configurations. Moreover, radar types are
suited for different tasks: spinning radar, with its dense 360˝

measurements, is ideal for building comprehensive mapping
databases, while 4D radar, prevalent in modern vehicles, excels
in real-time dynamic sensing and is well-suited for query
generation. Despite these complementary properties, existing
approaches do not account for the differences between radar
modalities, leaving the problem of heterogeneous radar PR
largely unresolved. These challenges highlight the need for a
new approach: modality-aware heterogeneous radar PR.

In this paper, we propose SHeRLoc, Synchronized
Heterogeneous Radar Place Recognition for Cross-Modal
Localization. Despite the inherent challenges of heterogeneous
radars, as illustrated in Fig. 1, SHeRLoc enables radar-agnostic
learning through Radar Cross Section (RCS) synchroniza-
tion, where RCS reflects the object’s material and geome-
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try. By employing multi-view polar bird’s-eye view (BEV),
SHeRLoc effectively addresses FOV differences and achieves
rotation invariance. Additionally, we present HOLMES, a
feature aggregation network that addresses radar speckle noise
and multipath issues through a learnable weight matrix and
ghostbin, while ensuring stable optimal transport with an
adaptive entropy-regularized Sinkhorn algorithm. Unlike high-
dimensional single-scale descriptors [1, 15], which may lack
global scene context, HOLMES integrates both local RCS
patterns and global structural information into a compact
descriptor. Our FFT-similarity-based data mining and adaptive
margin-based triplet loss enable spatially and viewpoint-aware
metric learning. By overcoming sparsity and noise patterns,
SHeRLoc addresses the kidnapped robot problem with 4D
radar on a spinning radar map, while also being applicable
to Frequency modulated continuous wave (FMCW) LiDAR.

Our contributions can be summarized as follows:
‚ We present SHeRLoc, a deep network designed to tackle

the complexities of heterogeneous radars, including spar-
sity, diverse FOV, and varying data dimensions. To the
best of our knowledge, this is the first approach specifi-
cally designed for heterogeneous radar systems.

‚ To address the modality gap, we propose a novel RCS
matching and multi-view polar projection, enabling radar-
agnostic learning. Our preprocessing pipeline effectively
removes dynamic objects, clutter, and ground return.

‚ We propose a hierarchical optimal transport-based feature
aggregation method for rotationally robust descriptors,
overcoming the loss of global context in traditional high-
dimensional descriptors. Our FFT-similarity-based data
mining and adaptive margin-based triplet loss ensure
spatially and viewpoint-aware metric learning.

‚ We evaluate SHeRLoc against state-of-the-art (SOTA)
methods under diverse scenarios (homogeneous, hetero-
geneous, single-/multi-session, and lidar-to-radar) and
demonstrate superior performance in extreme conditions
(e.g., crowded, snow, random rotation, and zero-shot). We
open-source the code for the radar robotics community.

II. RELATED WORK

A. Radar Place Recognition

Spinning radar and SoC radar are the two primary sensor
types in radar PR. Early radar PR mainly utilized spinning
radar, leveraging their 360˝ FOV and relatively dense repre-
sentations. Radar Scan Context [4] extended the LiDAR-based
Scan Context [2] for rotation invariance, while Kidnapped
Radar [6] introduced a NetVLAD-based approach. As time ef-
ficiency became critical, RaPlace [7] and Open-RadVLAD [8]
adopted the Fourier Transform, and ReFeree [9] proposed
a compact one-dimensional descriptor. These advancements
established a foundation for radar PR but faced challenges
when the sensor output is sparse, as seen in SoC radar.

The adoption of SoC radars in PR tasks has rendered
traditional spinning radar-based methods less applicable due to
the narrower FOV and sparser data of SoC radars, necessitating
new approaches. Notably, AutoPlace [10] increased the FOV
by using five automotive radars and overcame sparsity by

utilizing a spatial-temporal encoder. However, it relies on high-
dimensional descriptors and requires an additional reranking
process. mmPlace [11] expands the FOV by leveraging a
rotating platform and concatenating heatmaps, while SPR [12]
proposes a lightweight method using a single radar scan. How-
ever, both methods are vulnerable in dynamic environments as
they ignore velocity information. Recently, TransLoc4D [13]
employs transformer architectures to integrate geometry, in-
tensity, and velocity from 4D radar, but remains susceptible to
rotation due to its reliance on a single viewpoint. Hilger et al.
[14] considered both co- and counter-directional viewpoints;
nevertheless, this approach is still limited to just two view-
points, and the challenge of PR across heterogeneous radar
with distinct data characteristics remains unsolved.

B. Challenges in Heterogeneous Sensor Place Recognition
Heterogeneous sensor PR requires seamless integration of

sensors with distinct data characteristics. RaLF [16] retrieves
spinning radar queries from existing LiDAR maps, while Get
to the Point [17] leverages overhead imagery for LiDAR PR
and metric localization. However, both approaches struggle to
handle differing FOVs. Similarly, Cattaneo et al. [18] proposed
a LiDAR-Camera PR model without FOV considerations,
resulting in 360˝ point clouds that inevitably include irrelevant
scene information outside the RGB camera’s FOV. ModaLink
[19] addressed this by using camera pose priors to crop point
clouds, but this cropping approach is impractical since the
required extrinsic calibration is rarely available. In response,
LCPR [20] integrated sensor data using panoramic views,
while Yao et al. [15] introduced xNetVLAD that accounts
for FOV differences. However, these methods require separate
networks for each modality. Recently, HeLiOS [21] introduced
overlap-based learning with guided-triplet loss for heteroge-
neous LiDAR PR, though it is limited by LiDAR’s high
point density and minimal differences between heterogeneous
LiDAR scans. In contrast to previous methods, we propose a
novel RCS polar matching to achieve sensor-agnostic learning,
overcoming radar’s sparsity and distinct noise patterns.

III. METHODS

As illustrated in Fig. 2, SHeRLoc transforms 4D radar scans
S4D and spinning radar scans Sspin into RCS polar BEV images
denoted as I4D, Ispin P RHˆW . Here, H corresponds to a max-
imum range ρmax, and W corresponds to an azimuth span ϕ.
The synchronized data is then processed by a feature extraction
network G, and local features F4D, Fspin are aggregated into
global descriptors D4D,Dspin using HOLMES H, respectively.

A. Preprocessing
1) Dynamic Removal with Ego-velocity Estimation: Each

4D radar scan at time k, S4D,k “ tpxi, yi, zi, v
d
i , σiquNi“1 P

RNˆ5, comprises N points with 3D coordinates pxi, yi, ziq,
Doppler velocity vdi , and RCS σi. We employ the 3-Point
RANSAC-LSQ [22] to estimate the ego-velocity and apply a
refinement function fremoval, which filters out moving objects,
clutter, and ground returns. The refined scan is defined as
S 1

4D,k “ fremovalpS4D,kq “ tpxi, yi, zi, v
d
i , σiq P S4D,k | vdi ă

τv, zi ě τz, σi ě τσu, where each τ denotes a threshold.
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Fig. 2: The overall pipeline of SHeRLoc. RCS polar images I4D and Ispin are generated from heterogeneous radars and processed through a
shared feature extraction network G. Multi-level features FM and FH are aggregated into global descriptors D using HOLME.

2) FOV Matching with Multi-view Polar Projection: Prior
works [15, 23] address varying FOV issues in panoramic front-
view settings using sliding window cropping. However, such
approaches are unsuitable for spinning radar lacking elevation
measurements. Additionally, the 4D radar has a sector-shaped
FOV in Cartesian BEV, leaving empty regions in the rectan-
gular image and thereby degrading performance. In contrast,
polar BEV provides a consistent rectangular representation of
overlapping regions between heterogeneous radars.

For the 4D radar, S 1
4D,k is projected into RCS polar BEV

image I4D,k P RHˆW using a polar mapping function fpolar :
S 1

4D,k Ñ I4D,kpr, θq, where r and θ are defined as:

r “

”

a

x2 ` y2
ı H

ρmax
, θ “

”

1 ´ 2ϕ´1 arctanp
y

x
q

ı W

2
. (1)

Each pixel in I4D,k encodes RCS in a scaled form, consistent
with the spinning radar convention of quantizing return power
in half-dB steps (e.g., 100 corresponds to 50 dB). To form
a temporally aggregated 4D radar image I4D,t at time t, we
apply max-pooling over K consecutive frames:

I4D,tpr, θq “ max
kPtt´K`1,...,tu

I4D,kpr, θq. (2)

For the spinning radar, we rescale Sspin,t P RNrˆNa , with
Nr range bins and Na azimuth bins, to S 1

spin,t P RHˆ3W to
account for its three times larger FOV. We then extract nv

sub-views tM j
spin,tu

nv
j“1 from S 1

spin,t using a sliding window of
size H ˆ W along the azimuthal axis. Each sub-view with
azimuth offset ∆ between consecutive views is given by:

M j
spin,t “ S 1

spin,tr:, ∆pj ´ 1q : ∆pj ´ 1q ` W s. (3)

This multi-view generation function fmultiview : S 1
spin,t Ñ

tM j
spin,t P RHˆW u

nv
j“1 ensures 360˝ FOV coverage, support-

ing rotation-invariance, detailed in Section III-E.

3) RCS Matching: We match RCS values σ with return
power Pr using the classical radar equation, formulated as:

Pr “
Pt ¨ G2

¨ λ2
¨ σ

p4πq3 ¨ R4
, (4)

where Pt is the transmitted power, G is the antenna gain, λ
is the wavelength, and R is the range. An object at height h
above the ground and slant range R forms an angle α given
by sinα “ h{R, or equivalently, R “ h cscα. Inspired by
air-surveillance radars that maintain constant received power
regardless of range [24], modern spinning radars adopt a
cosecant-squared beam profile, where the antenna gain satisfies
G9R2. Assuming constant Pt and λ, the RCS in the radar
equation (4) is simplified on the dBsm scale as:

σdBsm “ Pr rdBs ` C, (5)

where σdBsm “ 10 log10pσq, with the reference RCS defined
as σref “ 1m2, and C “ 40 log10pRq ` 30 log10p4πq ´

20 log10pG ¨ λq ´ Pt rdBs is a correction constant.
To synchronize Mspin,t with I4D,t, where pixels represent

Pr and σ in half-dB steps, respectively, we precompute a
correction term Ccorr only once per radar pair to align I4D,i

with the most similar subview Mmax
spin,i. Then, each M j

spin,t is
processed by an RCS matching module frcs : M

j
spin,t Ñ Ijspin,t

to produce the final RCS polar BEV representation:
Ijspin,t “ frcspM

j
spin,tq “ M j

spin,t ` Ccorr, (6)

where Ccorr is obtained by optimizing a per-frame correc-
tion term ki to minimize the Huber loss. Let the set of
valid pixel coordinates be: Ωi “ tpr, θq | Mmax

spin,ipr, θq ‰

0 and I4D,ipr, θq ‰ 0u, and define the Huber loss as:

Lδprq “

#

1
2
r2, if |r| ď δ,

δ
`

|r| ´ 1
2
δ
˘

, if |r| ą δ.
(7)

Then, The loss for each image pair i can be formulated as:

Lipkiq “
1

|Ωi|

ÿ

pr,θqPΩi

Lδ

`

I4D,ipr, θq ´ pMmax
spin,ipr, θq ` kiq

˘

. (8)
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Fig. 3: The pipeline of RCS polar synchronization. The turbo col-
ormap is applied to I4D and Ispin for visualization clarity.

To ensure smooth variation of ki, we introduce a regularization
term with factor λ in the joint optimization problem:

tk˚
i u

N
i“1 “ argmin

tkiu
N
i“1

˜

N
ÿ

i“1

Lipkiq ` λ
N
ÿ

j“2

pkj ´ kj´1q
2

¸

. (9)

Then, we compute Ccorr “ 1
N

řN
i“1 k

˚
i . As shown in

Fig. 3, 4D radar scans S4D and spinning radar scans Sspin are
synchronized into an RCS polar BEV representation.

B. Feature Extraction Network

The preprocessed I4D, Ispin P RHˆW are fed simultaneously
into a ResNet-based architecture [25], G : I4D, Ispin Ñ

F4D, Fspin, which generate the feature maps F4D, Fspin P

RCˆH{32ˆW {32. Traditional heterogeneous PR methods re-
quire separate encoders for each sensor [16] or a backbone
network for independent learning [15, 18]. However, due to the
shared RCS polar BEV format, our approach allows the use
of a common network across radars, unlike previous methods.

C. Multi-scale Descriptors with Optimal Transport

To achieve a compact integration of complementary fea-
ture hierarchies, we propose HOLMES, Hierarchical Optimal
transport for Locally aggregated Multi-scale descriptors with
adaptive Entropy-regularized Sinkhorn-algorithm. Previously,
SALAD [26] fuses local features with a DINOv2 CLS token,
while HeLiOS [21] combines them with GeM-pooled global
features. However, both result in high-dimensional descriptors,
whereas HeLiOS-S, a smaller variant of HeLiOS, sacrifices ex-
pressiveness and global context. We address these issues with a
hierarchical framework that combines local RCS patterns and
global context. Mid-level features form a local feature matrix
FM P RnMˆdfM , and high-level features, processed through
an additional CNN layer, form FH P RnHˆdfH , where n is the
number of spatial locations and df is the feature dimension.
A convolution layer predicts a score matrix S P RnMˆmM

for FM, where mM denotes the number of clusters. Inspired
by GhostVLAD [27], we extend SALAD’s dustbin with a
ghostbin to handle noise points, resulting in a score matrix
S̄ P RnMˆpmM`2q. The Sinkhorn algorithm [28] optimizes

feature-to-cluster assignments, yielding a refined matrix R P

RnMˆmM by normalizing exppS̄q and dropping dustbin and
ghostbin. We introduce an adaptive entropy regularization as:

reg “ 1 ` 2 ¨ tanh

˜

1
N

řN
i“1pxi ´ µq

2

2pµ ` ϵq

¸

, (10)

where xi is RCS feature, µ is the mean and N is the number
of elements. We compute the variance relative to µ and apply
tanhp¨q to bound the regularization smoothly. High variance
induces smooth matching for stability, while low variance
leads to precise matching. Then, the aggregated feature matrix
V P RmMˆlM with the cluster dimension lM is computed as:

Vj,k “

n
ÿ

i“1

Ri,k ¨ F̄i,j , (11)

where F̄ is the feature derived by applying a dimensionality
reduction to F. Meanwhile, GeM pooling and MLP layers
produce a global representation G P RsM . Concatenating V
and G yields g P RmM ¨lM`sM , which is then transformed by a
learnable weight matrix H P RpmM ¨lM`sM qˆdM into the mid-
level descriptor DM P RdM . Applying the same process to FH

produces a high-level descriptor DH P RdH . By concatenating
the mid-level descriptor, the HOLMES H generates the final
descriptor D “ DM ‘ DH P RdM`dH .

D. FOV-aware Metric Learning
1) FOV-aware Data Mining: We introduce a FOV-aware

data mining approach that selects positive and negative sam-
ples based on view similarity. For efficient similarity com-
putation, we leverage the Convolution Theorem, performing
computations in the frequency domain [29]. Concretely, the
cross-correlation between two scans I1 and I2 is defined as:

SimpI1, I2q “

max
”

F´1
´

FpI1q ¨ FpI2q

¯ı

}I1}2 ¨ }I2}2
, (12)

where F and F´1 denote the Fourier and inverse Fourier trans-
forms, respectively. The complexity is reduced from OpN2q

to OpN logNq, making data mining time-efficient.
We select the multi-view set tIjspin,tu

nv
j“1 with the closest

timestamp to the corresponding I4D,t. Among these multi-
views, the scan Imax

spin,t that has the highest similarity is labeled
as a positive. In contrast, scans beyond the 25 m radius
are considered negative, even if their FOV partially overlap,
ensuring both spatially and viewpoint-wise meaningful.

2) FOV-aware Triplet Loss: To train the network with the
mined samples, we adopt a FoV-aware triplet loss formulation.
The objective is to bring positive samples closer in the
embedding space while pushing negatives apart, with a margin
that dynamically adapts to the degree of similarity:

Ltriplet “ max

ˆ

dpxq
i , x

p
j q ´

N

min
n“1

dpxq
i , x

n
j q ` αsim, 0

˙

, (13)

where xq
i is the query pair, xp

j is the positive pair, xn
j

are negative pair, and dp¨q denotes the L2 distance in the
embedding space. The adaptive margin αsim is defined as:

αsim “ γ pSimpq,pq ´ Simpq,nqq , (14)

where γ is a scale factor. By incorporating similarity into
the margin, the loss becomes sensitive to FOV overlap. If a
negative has a similar view to the query, the margin becomes
smaller, making the model focus on harder negatives.
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Fig. 4: For a far but overlapping negative and a nearby but rotated
positive, Cartesian BEV yields higher similarity with the negative due
to rotation variance. In contrast, polar BEV produces higher similarity
with the positive, demonstrating robustness to rotation.

E. Rotation Invariance and Intentional Translation Variance

As shown in Fig. 4, spatially distant negatives with overlap-
ping FOV produce similar features when using Cartesian BEV,
as seen in [10, 16]. Also, nearby positives may exhibit feature
mismatches due to small rotations. To address this, we leverage
fpolar, fmultiview, G, and H to achieve rotation invariance and
intentional translation variance, thereby maintaining discrim-
inative power in long-range radar PR. See RING++ [30] for
more details about invariance and equivariance.

1) Pipeline Invariance: A rotated scan I 1pr, θq “ Ipr, θ `

δθq shifts multi-view azimuths cyclically. Then, G out-
puts F 1

jpr, θq, and H produces an invariant descriptor. With
polar BEV ensuring translation variance, the pipeline is
rotation-invariant and intentionally translation variant, satis-
fying HpGpfmultiviewpTδθSpr, θqq “ HpGpfmultiviewpSpr, θqqq.

2) Feature Extraction Equivariance: Since a rotation trans-
formation Tδθ corresponds to a shift in the azimuth dimen-
sion and fmultiview operates uniformly across θ, the output of
fmultiview is shifted by the same δθ: fmultiviewpTδθSpr, θqq “

TδθfmultiviewpSpr, θqq. Similarly, the CNN-based network G
preserves translation-equivariance up to edge effects [31].
Therefore, both fmultiview and G maintain the translation-
equivariance property. Theoretically, we have to generate in-
finite multi-views, and aliasing may occur due to downsam-
pling. However, robust performance is achieved with a limited
number of multi-views, detailed in Section IV-D.

3) HOLMES Invariance: H processes feature maps F to
produce D “ DM ‘ DH . GeM Pooling produces a global
feature G, invariant to translations, as the summation is order-
independent. A convolutional layer produces a score matrix S
for Optimal Transport, and the Sinkhorn algorithm computes
assignments R. The aggregated feature Vj,k “

řn
i“1 Ri,k¨Fi,j

is invariant, as summation reorders with translated inputs
F 1
jpr, θq. Ghostbin and dustbin discard non-informative points,

preserving invariance by excluding spatial dependencies. For
multi-scale processing, high-level features follow the same
process. Concatenation (DM ‘ DH ) remains invariant to
cyclic shifts. For translated feature maps F 1

jpr, θq, H yields
D1

M ‘D1
H “ HpF 1

jpr, θqq “ HpFjpr, θqq “ DM ‘DH . Thus,
our proposed HOLMES network is translation-invariant.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

We trained SHeRLoc on a GeForce RTX 3090 using the
AdamW optimizer with CosineAnnealingLR scheduler, start-
ing with a learning rate of 1e-3 and decaying to a minimum of
1e-5 over 20 epochs. For the polar BEV projection, the reso-
lution of a polar image with a maximum range ρmax “ 150m
and an azimuth span ϕ “ 120˝ is 384 ˆ 192. The number of
scans K is set to 5 for (2); the multi-view offset ∆ is set to
10˝(16 pixels); and λ is set to 0.1 for (9). For HOLMES,
pmM , lM , sM , dM q are set to p64, 256, 256, 256q, and
pmH , lH , sH , dHq are set to p16, 64, 64, 64q, respectively.
We utilize one positive and five negative samples for (13),
and γ is set to 1.0 for (14). For SHeRLoc-S, a lightweight
variant, only the mid-level descriptor DM P R256 is retained.

B. Heterogeneous Radar Dataset and Evaluation Metrics

To evaluate SHeRLoc, a dataset must include both 4D radar
and spinning radar. Existing public datasets, such as Oxford
Radar RobotCar [3] and MulRan [4], are limited to spinning
radar, while NTU4DRadLM [32] and SNAIL Radar [33] focus
solely on 4D radar. In contrast, HeRCULES [34] is the only
publicly available heterogeneous range sensor dataset, inte-
grating 4D radar, spinning radar, and FMCW LiDAR, making
it uniquely suited for heterogeneous radar PR evaluation.

We evaluate performance using Recall@K (R@K) and
Average Recall@K (AR@K). A retrieval is deemed correct
if the predicted location lies within a 5 m radius of the
ground-truth. In addition, we employ the Precision-Recall (PR)
curve to assess overall retrieval performance. The PR curve
is obtained by sweeping a threshold τ over the descriptor
distance dpxq

i , x
m
j q between query and map embeddings. For

each τ P r0, 2s, uniformly sampled at 1000 intervals, a
retrieved pair is considered a match if dpxq

i , x
m
j q ă τ .

C. Comparison with State-of-the-Art Methods

As the first heterogeneous radar PR model, SHeRLoc was
compared against homogeneous PR SOTA models, includ-
ing spinning radar PR methods Radar Scan Context [4],
RaPlace [7], RadVLAD, and FFT-RadVLAD [8], as well as
SoC radar PR models Autoplace [10], TransLoc4D [13], and
LiDAR PR method MinkLoc3Dv2 [35]. For fair compari-
son, we used 5-scan aggregation for 4D radar and applied
RCS matching for spinning radar across all models. Since
methods like RaPlace [7] and AutoPlace [10] operate on
BEV images, they were included in the heterogeneous radar
PR evaluation. Also, all network-based models were trained
on the Mountain 01-03, Bridge 01, Stream 02, and
Parking Lot 03-04, while validation was conducted on
Parking Lot 01-02 of HeRCULES.

1) Heterogeneous Radar Single-session PR: For single-
session evaluation, spinning radar data were used as the
database and 4D radar data as queries across the Sports
Complex, Library, and River Island sequences. As
shown in Table I, SHeRLoc consistently outperforms all
baselines, while the lightweight SHeRLoc-S also surpasses all
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TABLE I: Performance Comparison for Single-session Place Recognition with Heterogeneous Radar in Various Challenging Conditions
(☼: Clear, Ì: Dusk, L: Night, Å: Cloud, �: Snow, �: dynamic object-rich, Bold : Best, Underline : Second Best)

Sports Complex Library River Island
01 ☼ 02 L 03 � 01 ☼ 02 L 03 � 01 ☼ � 02 Ì Å � 03 Å �Methods

R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1%

Radar SC [4] 0.047 0.135 0.042 0.061 0.044 0.064 0.040 0.060 0.041 0.063 0.042 0.066 0.010 0.020 0.004 0.012 0.005 0.030
RaPlace [7] 0.042 0.148 0.056 0.156 0.025 0.152 0.035 0.069 0.040 0.090 0.016 0.123 0.002 0.152 0.000 0.024 0.004 0.162
RadVLAD [8] 0.019 0.334 0.051 0.222 0.022 0.426 0.011 0.237 0.014 0.295 0.012 0.245 0.001 0.217 0.066 0.543 0.006 0.367
FFT-RadVLAD [8] 0.040 0.344 0.014 0.186 0.022 0.377 0.023 0.287 0.014 0.273 0.011 0.229 0.002 0.330 0.026 0.533 0.001 0.488
Autoplace [10] 0.015 0.198 0.046 0.098 0.017 0.186 0.010 0.129 0.031 0.131 0.018 0.122 0.003 0.051 0.001 0.009 0.001 0.021

SHeRLoc-S 0.857 0.924 0.975 0.985 0.945 0.981 0.866 0.917 0.925 0.950 0.850 0.891 0.899 0.965 0.868 0.963 0.850 0.945
SHeRLoc 0.900 0.936 0.962 0.987 0.958 0.980 0.881 0.936 0.938 0.964 0.868 0.912 0.880 0.957 0.860 0.952 0.858 0.959

Sports Complex  Library River Island 

Narrow road Dynamic objectDownhill w/ curve

Success Success Success

Fig. 5: Trajectory from Sports Complex, Library, and River
Island sequences, with green indicating true matching pairs, high-
lighting SHeRLoc’s robustness in challenging scenarios.

Query Ground Truth SHeRLoc

RadVLADRaPlace FFT-RadVLAD

SHeRLoc-S

AutoPlace

Fig. 6: Qualitative results of SOTA methods on a challenging query.
Green indicates successful retrieval, and red indicates failure.

SOTA methods. Furthermore, as illustrated in Fig. 5, SHeRLoc
achieves robust performance even in challenging scenarios
such as night, snow, and dynamic object-rich environments.

2) Heterogeneous Radar Multi-session PR: For multi-
session evaluation, spinning radar data from sequence 01 were
used as the database, and 4D radar data from sequences 02
and 03 were used as queries. Quantitative results are presented
in Table II, with qualitative analysis shown in Fig. 6 and
recall@N curves depicted in Fig. 7. We have demonstrated the
necessity of heterogeneous radar PR models beyond homoge-
neous radar systems by showing that existing SOTA methods
fail to address the inherent challenges of heterogeneous radar.

3) Homogeneous Radar Multi-session PR: SHeRLoc was
compared with Autoplace [10], MinkLoc3Dv2 [35], and
TransLoc4D [13] for 4D radar PR, and with RaPlace [7],
RadVLAD, and FFT-RadVLAD [8] for spinning radar PR.

TABLE II: Performance Comparison for Multi-session Place Recog-
nition with Heterogeneous Radar and Homogeneous Radar

Methods
Sports Complex Library

01 - 02 01 - 03 01 - 02 01 - 03 AR@1
R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1%

H
et

er
og

en
eo

us

RaPlace [7] 0.024 0.056 0.016 0.057 0.021 0.044 0.011 0.023 0.018
RadVLAD [8] 0.011 0.118 0.005 0.214 0.012 0.138 0.011 0.073 0.010
FFT-RadVLAD [8] 0.006 0.121 0.007 0.182 0.015 0.217 0.016 0.136 0.011
Autoplace [10] 0.007 0.071 0.012 0.070 0.022 0.129 0.007 0.119 0.012

SHeRLoc-S 0.796 0.890 0.580 0.696 0.822 0.892 0.618 0.757 0.704
SHeRLoc 0.812 0.893 0.650 0.759 0.817 0.887 0.610 0.743 0.722

4D

Autoplace [10] 0.799 0.967 0.725 0.945 0.812 0.986 0.619 0.901 0.738
MinkLoc3Dv2 [35] 0.837 0.982 0.743 0.977 0.725 0.981 0.619 0.963 0.735
TransLoc4D [13] 0.833 0.970 0.804 0.976 0.801 0.991 0.676 0.940 0.779

SHeRLoc-S 0.866 0.945 0.803 0.925 0.914 0.986 0.908 0.988 0.873
SHeRLoc 0.904 0.961 0.843 0.949 0.950 0.995 0.923 0.988 0.905

Sp
in

ni
ng

RaPlace [7] 0.943 0.962 0.927 0.989 0.998 1.000 0.906 0.955 0.944
RadVLAD [8] 0.996 1.000 0.981 1.000 0.999 1.000 0.975 1.000 0.988
FFT-RadVLAD [8] 0.996 1.000 0.985 1.000 0.999 1.000 0.979 1.000 0.990

SHeRLoc-S 0.963 0.993 0.962 0.981 1.000 1.000 0.936 0.997 0.965
SHeRLoc 0.993 1.000 0.981 0.999 0.999 1.000 0.998 1.000 0.993
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Fig. 7: R@N curves for multi-session PR with heterogeneous radar.
SHeRLoc outperforms all methods when retrieving 40 candidates.
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Fig. 8: Precision-Recall curve for homogeneous radar multi-session
PR: (a) 4D radar-based PR results on the Sports Complex, (b)
Spinning radar-based PR results on the Library.

The results are reported in Table II and Fig. 8, confirming
SHeRLoc’s superior performance despite not being designed
for homogeneous radar. For 4D radar PR, it demonstrates top
performance across nearly all sequences. For spinning radar
PR, SHeRLoc achieves an AR@1 of 0.993, surpassing all
SOTA methods. Furthermore, PR curves indicate that SHeR-
Loc achieves high precision and recall for both radar types
under diverse conditions, demonstrating robust performance
for both homogeneous and heterogeneous radar.
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TABLE III: Performance Comparison under Random Rotation

Methods Sports Complex Library River Island

AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

Radar SC [4] 0.045 0.087 0.041 0.063 0.007 0.021
RaPlace [7] 0.030 0.204 0.130 0.229 0.002 0.191
RadVLAD [8] 0.011 0.318 0.012 0.249 0.016 0.402
FFT-RadVLAD [8] 0.019 0.310 0.012 0.234 0.019 0.429
Autoplace [10] 0.026 0.161 0.020 0.127 0.001 0.122

SHeRLoc-S 0.905 0.959 0.828 0.893 0.710 0.880
SHeRLoc 0.918 0.964 0.858 0.920 0.733 0.904

TABLE IV: Zero-shot Performance on Unseen Datasets (R@1)

Methods MulRan Oxford Radar AR@1
DCC 01 KAIST 03 #1 to #3 #2 to #3

Radar SC [4] 0.683 0.896 0.655 0.348 0.646
RaPlace [7] 0.641 0.932 0.666 0.437 0.669
RadVLAD [8] 0.507 0.833 0.813 0.693 0.712
FFT-RadVLAD [8] 0.706 0.948 0.666 0.427 0.687

SHeRLoc-S 0.732 0.961 0.855 0.748 0.824
SHeRLoc 0.708 0.963 0.900 0.890 0.865

TABLE V: Performance Comparison for Place Recognition with
Spinning Radar as Database and FMCW LiDAR as Query

Methods Sports Complex Library River Island

AR@1 AR@1% AR@1 AR@1% AR@1 AR@1%

Radar SC [4] 0.141 0.188 0.046 0.060 0.033 0.050
Autoplace [10] 0.017 0.105 0.014 0.059 0.004 0.041
Radar-to-LiDAR [36] 0.656 0.832 0.468 0.769 0.229 0.530

SHeRLoc-S 0.948 0.971 0.895 0.945 0.932 0.983
SHeRLoc 0.948 0.977 0.899 0.931 0.952 0.987

D. Robustness against Random Rotation

In real-world scenarios, random yaw angle rotations be-
tween the database and query are common, making rota-
tion robustness crucial. Therefore, we conducted experiments
with random yaw angle rotations on database scans within
a 360˝ range. Through polar domain multi-view generation
and the rotation-invariant design of the HOLMES feature
aggregation network, SHeRLoc demonstrates superior rota-
tion robustness compared to other methods. As shown in
Table III, comparing AR@1 with SOTA methods on Sports
Complex, Library, and River Island, both SHeRLoc
and SHeRLoc-S consistently achieve the best performance.
This robust performance, despite angle variations, demon-
strates that a limited number of multi-views is sufficient for
achieving robust rotation invariance.

E. Zero-shot Generalization Performance Evaluation

We evaluated SHeRLoc’s zero-shot generalization on un-
seen datasets, including MulRan [4] and the Oxford Radar
RobotCar [3]. While HeRCULES [34] employs the Navtech
RAS6 spinning radar, MulRan uses the earlier Navtech
CIR204-H, and Oxford Radar RobotCar uses the Navtech
CTS350-X. These hardware differences induce substantial
domain shifts in terms of noise characteristics, resolution, and
detection range. For MulRan, we conducted single-session
PR on the DCC 01 and KAIST 03 sequences. For Ox-
ford Radar RobotCar, we performed multi-session PR using
2019-01-18 (#3) as the database and 2019-01-10
(#1) and 2019-01-16 (#2) as queries. As shown in
Table IV, SHeRLoc achieves strong recall even under chal-
lenging zero-shot settings with domain shifts.

TABLE VI: Ablation Study on SHeRLoc Components to Evaluate
Individual Contributions

B S P R A
Sports Complex Library

01 - 02 01 - 03 01 - 02 01 - 03
R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1%

✓ ˆ ˆ ˆ ˆ 0.009 0.015 0.009 0.013 0.019 0.032 0.016 0.035
✓ ✓ ˆ ˆ ˆ 0.013 0.072 0.009 0.032 0.011 0.022 0.008 0.031
✓ ✓ ✓ ˆ ˆ 0.659 0.792 0.516 0.633 0.657 0.749 0.497 0.665
✓ ✓ ✓ ✓ ˆ 0.737 0.840 0.529 0.625 0.751 0.836 0.514 0.679
ˆ ✓ ✓ ✓ ✓ 0.558 0.748 0.295 0.426 0.511 0.631 0.199 0.350

✓ ✓ ✓ ✓ ✓ 0.812 0.893 0.650 0.759 0.817 0.887 0.610 0.743

TABLE VII: Ablation Study on Feature Aggregation Method

Methods Size
Sports Complex Library

01 - 02 01 - 03 01 - 02 01 - 03
R@1 R@1% R@1 R@1% R@1 R@1% R@1 R@1%

NetVLAD [1] 32768 0.378 0.598 0.151 0.254 0.302 0.474 0.102 0.218
MAC [37] 512 0.700 0.846 0.404 0.534 0.525 0.657 0.258 0.514
SPoC [38] 512 0.282 0.517 0.112 0.210 0.155 0.258 0.036 0.150
GeM [39] 512 0.486 0.717 0.234 0.384 0.324 0.475 0.091 0.197
SALAD [26] 8448 0.371 0.611 0.170 0.295 0.330 0.497 0.094 0.235

HOLMES-S* 256 0.769 0.882 0.616 0.730 0.840 0.909 0.587 0.756
HOLMES-S 256 0.796 0.890 0.580 0.696 0.822 0.892 0.618 0.757
HOLMES 320 0.812 0.893 0.650 0.759 0.817 0.887 0.610 0.743
HOLMES-S*: HOLMES-S without ghostbin and adaptive entropy regularization.
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Fig. 9: Data distribution of each sensor and the synchronized data
distribution after SHeRLoc’s RCS polar domain matching.

F. Heterogeneous Range Sensor Place Recognition

We evaluated heterogeneous range sensor PR performance
using FMCW LiDAR queries and a spinning radar database,
comparing it with Radar Scan Context [4], Autoplace [10], and
Radar-to-LiDAR [36]. We utilized radial velocity in a manner
analogous to 4D radar, and replaced RCS with reflectivity ρ,
which satisfies the following LiDAR equation:

I9
PtD

2
rη

2ρ cosαi

4R2
, (15)

where I is the LiDAR intensity, Pt is the transmitted power,
Dr is the receiver aperture diameter, η is the system transmis-
sion factor, αi is the angle of incidence. Our preprocessing
aligns the distributions of FMCW LiDAR and spinning radar,
as shown in Fig. 9, and Table V confirms that SHeRLoc
remains robust across heterogeneous range sensors.

G. Ablation Study

1) BSPRA Components: We compared SHeRLoc variants
that incorporate the following modules: B (Backbone sharing),
S (Scan aggregation), P (Polar projection), R (RCS matching),
A (Adaptive margin loss). Table VI demonstrates how each
component contributes to the performance. In the Cartesian do-
main, performance is significantly poor, and applying S alone
fails to yield significant improvement. However, combining S
with P, as in our approach, provides an average improvement
of 57.2% in recall@1, with R further enhancing performance
by 5.05%. As illustrated in Fig. 9, although each sensor’s
raw data has different distributions, using S, P, and R leads
to very similar data distributions. Finally, A contributes an
additional 8.95% increase, resulting in an overall improvement
of 71.2%. Moreover, B encourages learning a shared feature
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space, which enhances cross-modal generalization and avoids
redundant parameterization.

2) Feature Aggregation: We evaluated HOLMES against
NetVLAD [1], MAC [37], SPoC [38], GeM [39], and
SALAD [26]. As shown in Table VII, widely used methods
like GeM pooling are vulnerable to noisy and sparse radar
data. Additionally, NetVLAD and SALAD require large de-
scriptor sizes, leading to longer processing times and higher
storage demands. In contrast, HOLMES-S, with a compact
256-dimensional descriptor, achieves accurate PR performance
through its radar-specific design, including ghostbin and adap-
tive entropy regularization. Moreover, HOLMES, with a de-
scriptor size of 320 dimensions, further improves performance
by employing multi-scale descriptors. As a result, HOLMES
outperforms other methods, while requiring less storage and
generating each descriptor in just 13ms.

V. CONCLUSION

In this work, we introduce SHeRLoc, the first deep net-
work for heterogeneous radar PR. SHeRLoc employs a novel
preprocessing method to transform radar data into synchro-
nized RCS polar BEV representations and hierarchical opti-
mal transport-based multi-scale descriptors. Our FOV-aware
data mining and adaptive margin-based triplet loss facili-
tate spatially and viewpoint-wise meaningful metric learning.
Evaluations on diverse sequences demonstrate that SHeRLoc
achieves robust performance in challenging environments and
is applicable to both heterogeneous and homogeneous radar
systems, as well as heterogeneous range sensor systems. As
the first study on heterogeneous radar PR, SHeRLoc opens
new opportunities for cross-modal place recognition, enabling
efficient localization of vehicles with automotive 4D radars on
pre-built spinning radar maps.
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