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0. Motivation

As radar technology advances, multiple radar types have emerged, including spinning radars, X-
band surveillance radars, and automotive 4D radars (see Fig A). Despite this growing diversity,
most existing radar place recognition methods are designed for homogeneous settings, assuming
the same radar type is used for both query and database. As illustrated in Fig B, from our submit-
ted multimedia, this limits their generalizability and robustness when faced with intra-modality
heterogeneity in range sensors.

Spinning Radar Single-chip Radar 1" cube form Radar
(Navtech RAS6) (Texas Instruments IWR1843BOOST) (DesignCore RS-1843A0PU)

X-band Radar 4D Radar FMCW LiDAR
(SIMRAD HALO4) (Continental ARS548) (Aeva Aeries Il)

Figure A: Overview of various radar types and associated manufacturers.

Spinning Radar 4D Radar +) FMCW LiDAR
® Radar Scan Context (ICRA2020) @ Autoplace (ICRA2020) ® Scan Context (IROS2018)
® RaPlace (IROS2023) ® SPR (RA-L2024) ® PointNetVLAD (CVPR2018)
® Refree (RA-L2024) ® TransLoc4D (CVPR2024) ® MinkLoc3Dv2 (ICPR2022)

Figure B: Homogeneous radar place recognition models cannot be applied to different sensor types.

To highlight the benefits of our heterogeneous radar framework, we provided qualitative results
in Fig. 6, where existing homogeneous models fail under the heterogeneous multi-session setup.
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Moreover, as demonstrated in Fig. 5, the spinning radar’s capability to build comprehensive
mapping databases, combined with the 4D radar’s real-time dynamic sensing, showcases the
strengths of each sensor type in heterogeneous radar systems. This highlights the potential of
our framework for handling challenging scenarios where the database and query are collected
by different radar types.

1. Preprocessing

We detail the refinement function used to remove clutter and ground returns. Given a raw 4D
radar scan
Sk = {(i,yir zi, 0], 00) Hls

the refinement function fremoval €liminates spurious points caused by multipath reflections, ground-
plane returns, or noise. The refined set is defined as:

Sipx = Jremoval(Sap k) = {(zi,yi, 21,08, 03) € Sapyge |V < 10, 20 > 7y 07 > 75 )

In practice:

¢ Since the radar is mounted at the front lower part of the vehicle, points with vertical coor-
dinate below 7, = —1m are regarded as ground reflections and removed.

¢ Points with RCS smaller than 7, = —10 dBsm are discarded as low-intensity clutter, as they
are unlikely to correspond to meaningful structures.

¢ Points with Doppler velocity exceeding 7, = 5m/s are filtered out to suppress fast-moving
artifacts not relevant to place recognition.

This thresholding strategy effectively suppresses ground-plane reflections, random clutter, and
spurious high-velocity points, while preserving stable returns from meaningful objects.

2. Correction Term C,,,

We clarify that C,,,, is determined primarily by the physical characteristics of the radar sensor
(e.g., antenna gain and transmitted power), rather than by environmental factors. Therefore, it
is environment-independent and does not require re-estimation across different scenes or view-
points. In our implementation, we simply used a subset of the mountain 01 sequence for con-
venience, but any dataset could be used since the correction depends only on sensor properties.
More specifically, we derive C¢,» by matching the measured return power P, with the Radar
Cross Section (RCS) o via the classical radar equation:

Pt'GQ')\Q'U

P=——
" (4m)3 - RY

1)
where P, is the transmitted power, G is the antenna gain, A is the wavelength, and R is the range.
Modern spinning radars adopt a cosecant-squared beam profile, effectively compensating for the
R* attenuation, which allows the RCS to be expressed in decibel scale as:

OdBsm = Pr [dB] + C, (2)

where C'is the correction constant. As such, C.,,, only needs to be re-estimated when a new radar
sensor (with different P;, G, or \) is introduced, not when operating in new environments.

3. Temporal Max Pooling

Before temporal max pooling, we perform a refinement step that removes dynamic objects based
on Doppler velocity. This preprocessing effectively suppresses moving agents, such as cars and
pedestrians, ensuring their influence does not propagate into the temporally aggregated radar
image. Consequently, the temporal max pooling step does not introduce motion blur from dy-
namic agents, as these returns have already been filtered out. This is also validated by our ex-
perimental results: despite the heavy traffic and large number of moving objects in the River



Island urban driving sequences, our method achieves consistently high recall in Tables I, III,
and IV. Furthermore, Fig. 5 qualitatively demonstrates that place recognition remains robust even
in scenarios with significant dynamic clutter. There are three different strategies for 4D radar scan
aggregation, each with different trade-offs.

1) Max-pooling without motion compensation: As described in the paper, the simplest method
directly aggregates adjacent scans via max pooling without applying motion compensation. This
has the advantage of requiring no external sensors (e.g., IMU, odometry) and enables fast con-
catenation. Although a small degree of motion blur may occur, its effect is limited: the 4D radar
operates at 20 Hz, implying a At = 0.05s interval between frames, and with a resolution of ap-
proximately 0.4 m per pixel, even at 36 km/h the inter-frame displacement corresponds to only
about one pixel. For spinning radar (4 Hz), motion-induced distortion is a known issue [1, 2], but,
to the best of our knowledge, all existing radar place recognition methods (e.g., [3, 4, 5]) do not
employ explicit motion compensation, as the long radar wavelength inherently limits resolution
and the task focuses on place recognition rather than precise geometric alignment.

2) Ground-truth compensated aggregation: When ground-truth ego-motion is available (e.g., Au-
toPlace [6]), scans can be concatenated using exact trajectory information. While this provides
the most accurate alignment, it is impractical in real-world deployment scenarios where ground
truth is not accessible.

3) Velocity-based motion compensation: Assuming constant velocity between consecutive 4D
radar scans, the Cartesian displacement between scans is

e
Vg k—1 s Uy k-1
y,k—1,k — 9
Ir

where f,. is the frame rate. The displacement is projected into the polar domain (r,6) as

TSy k—1,k T Y- Syk—1k
b
Va2 +y?

and normalized by the grid resolutions (%, hg) to yield the polar BEV coordinate offsets. Bilin-
ear interpolation in this domain allows motion-compensated feature alignment. This approach,
similar to the method used in TDFANet [7], is more practical than relying on ground-truth data
but remains sensitive to velocity estimation errors, particularly during rotational motion when
ego-motion is not purely translational.

T Syk—1,k — Y- Sxk—1,k
1,2 +y2

Arp_1p = Aby_1x = )

4. Polar BEV vs Cartesian BEV Response
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Figure C: Comparison of Cartesian representation versus Polar representation.

We clarify that the key advantage of the polar representation lies in its ability to align the field
of view (FOV) between different radar modalities while discarding uninformative regions. In
Cartesian projection, the FOV mismatch with spinning radar results in large empty regions (as
illustrated in Fig. C), which cannot be easily cropped out because the Cartesian grid inherently
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assumes rectangular coverage. These uninformative areas dilute the feature learning process
and degrade recognition performance. In contrast, polar projection directly parameterizes the
radar measurements in terms of range and azimuth, enabling us to (i) precisely crop the FOV to
match between spinning and 4D radars, (ii) remove empty or uninformative regions outside the
overlap, and (iii) ensure uniform angular sampling, which provides balanced spatial coverage
for descriptor learning.

5. HOLMES: Multi-scale Descriptors with Optimal Transport

HOLMES introduces a sensor- and task-specific aggregation pipeline explicitly designed for het-
erogeneous range sensors. Specifically, it incorporates: (i) variance-adaptive entropy regular-
ization to stabilize matching under noisy RCS distributions, (ii) ghostbin suppression to miti-
gate radar-specific artifacts, and (iii) compact yet discriminative descriptors that preserve cross-
sensor robustness. These components directly address heterogeneity challenges such as noise,
sparsity, and distinct intensity statistics, making HOLMES both more robust and more com-
pact than SALAD or HeLiOS. To clarify, most traditional feature aggregation methods primar-
ily focus on local feature pooling. For example, MAC [8] uses channel-wise maximum activa-
tions (local maxima only), SPoC [9] averages feature maps (global mean without structural con-
text), and GeM [10] generalizes pooling with a learnable p-norm (local-to-global summarization).
NetVLAD [11] indirectly captures scene-level distribution via clustering residuals, but does not
employ an explicit global descriptor. In contrast, SALAD explicitly integrates a global token to
enhance scene-level representation, and HeLiOS [12] similarly employs GeM pooling combined
with MLP layers to incorporate global context. For clarity, we provide a comparison of represen-
tative aggregation methods in terms of their treatment of local and global contexts:

Table 1: Comparison on Feature Aggregation Method

Sports Complex Library
Methods Global Context | Size 01-02 01-03 01-02 01-03

R@l R@l1% R@l R@1% R@l R@1% R@l R@1%

NetVLAD [11] A 32768 | 0.378 0598 0.151 0254 0302 0474 0102 0218
MAC [8] x 512 | 0700 0.846 0.404 0534 0525 0657 0258 0514
SPoC [9] x 512 | 0.282 0517 0112 0210 0155 0258 0.036 0.150
GeM [10] A 512 | 0486 0717 0234 0384 0324 0475 0.091 0.197
SALAD [13] O 8448 | 0.371 0.611 0170 0295 0330 0497 0.094 0235
HOLMES | O | 320 | 0.812 0.893 0.650 0.759 0.817 0.887 0.610 0.743

Table 2: Comparison of Aggregation Methods in Terms of Local Feature Utilization and Global Context Integration

Method | Local Feature Aggregation | Global Context Integration

NetVLAD [11] Residuals w.r.t. cluster centers Indirect distributional info, no explicit global token

MAC [8] Channel-wise max pooling None

SPoC [9] Sum/average pooling Implicit global mean

GeM [10] Generalized mean pooling (p-norm) Learnable pooling, no explicit token

SALAD [13] OT-based patch token alignment Explicit global token (scene descriptor)

HeLiOS [12] OT-based patch token alignment GeM pooling with MLP layers

HOLMES ‘ OT-based patch token alignment ‘ Hierarchical optimal transport, GeM pooling with MLP layers

6. Zero-shot Generalization

Regarding generalization, we emphasize that our framework has already been evaluated in a het-
erogeneous range sensor PR setting, where FMCW LiDAR queries were tested against a spinning
radar database. Although SHeRLoc is specifically designed for heterogeneous radar modalities,
the results demonstrate that it also generalizes effectively to cross-modality scenarios involving
LiDAR, achieving strong performance.



Table 3: Zero-shot Generalization Performance on Unseen Datasets

Methods MulRan Oxford Radar AR@1
DCC 01 KAIST 03 | #1to#3 #2to#3
Radar SC [14] 0.683 0.896 0.655 0.348 0.646
RaPlace [3] 0.641 0.932 0.666 0.437 0.669
RadVLAD [4] 0.507 0.833 0.813 0.693 0.712
FFT-RadVLAD [4] 0.706 0.948 0.666 0.427 0.687
ReFeree [5] 0.723 0.955 0.803 0.677 0.790
SHeRLoc-S 0.732 0.961 0.855 0.748 0.824
SHeRLoc 0.708 0.963 0.900 0.890 0.865

We also evaluated zero-shot experiments on the MulRan [14] dataset and the Oxford Radar
RobotCar [15] dataset. The HeRCULES spinning radar is a Navtech RAS6, whereas MulRan em-
ploys the earlier Navtech CIR204-H model, and Oxford Radar RobotCar employs the Navtech
CTS350-X model. These radars differ: RAS6 offers a more extended detection range, while
CIR204-H exhibits coarser resolution. The CTS350-X used in the Oxford Radar RobotCar is an
older scanning radar with lower angular resolution and a shorter maximum range than the RAS6.
These differences provide diverse sources of domain shift, making both MulRan and Oxford
Radar RobotCar suitable benchmarks for unseen evaluation.

For the MulRan dataset, we conducted single-session place recognition experiments on the DCCO01

and KAISTO03 sequences. For the Oxford Radar RobotCar dataset, we performed multi-session

place recognition experiments by using the 2019-01-18 #3 sequence as the databaseand 2019-01-10
#1 and 2019-01-16 #2 as the query. The results, now included in Table 3, demonstrate that

our method maintains strong recall in these challenging zero-shot settings, confirming its gener-
alization under radar-domain shifts.

7. Triplet Loss with Adaptive Margin
Substituting Eq. 14 into Eq. 13, the triplet loss becomes:

Liiplet = Max (d(xg, al) — min d(z?,z?) + v(Sim(q, p) — Sim(q, n)), 0). 3)

IR

Focusing on the hardest negative, this can be rewritten as:

Lyiplet = max ([d(x?, zl) +~Sim(q, p)] — [d(z],2}) + ySim(q, n)], 0). (4)

Our adaptive margin modulates each triplet individually based on FOV similarity, resulting in
sample-specific pull/push dynamics:

* Hard negatives with high similarity to the query receive smaller margins, forcing the net-
work to discriminate finer details.

* Easy negatives with low similarity receive larger margins, reducing their gradient contri-
bution and preventing overfitting to trivial cases.

A global rescaling or fixed margin cannot replicate this selective, adaptive behavior.

When the adaptive margin is not activated, we set asim to a constant value, i.e., a fixed margin
is used. This setup allows a direct comparison between the fixed-margin and adaptive-margin
formulations, as reported in the ablation study on SHeRLoc components. Empirically, we observe
that enabling the adaptive margin improves the average performance by 8.95%, demonstrating
its effectiveness in enhancing discriminability and robustness.
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8. Shared Backbone vs Modality-specific Backbone

From a representation-learning perspective, different radar modalities exhibit substantial struc-
tural similarities in the spatial and temporal distributions of radar reflections. By training a single
backbone, the model learns a shared feature space that promotes generalization across modalities
and avoids redundant parameterization. This design is particularly advantageous in heteroge-
neous localization, where direct correspondence between radar modalities is required. In con-
trast, modality-specific backbones may overfit to modality-dependent biases and hinder cross-
modal matching. Theoretical analyses also support that learning in a shared latent space reduces
population risk and provides more stable representations compared to separate training.

Table 4: Performance Comparison of Shared and Modality-Specific Backbone Designs

Sports Complex Library
Methods | 1 Backbone ‘ 01-02 01-03 01-02 01-03
Params
‘ R@l R@1% R@1l R@1% R@l R@1% R@l R@1%
SHeRLoc* \ 22.3M \ 0.558 0.748 0.295 0426 0511 0.631 0.199 0.350
SHeRLoc \ 11.2M \ 0.812 0.893 0.650 0.759 0.817 0.887 0.610 0.743

SHeRLoc*: SHeRLoc with modality-specific backbones.

From a practical deployment perspective, a shared backbone yields a lighter model with signifi-
cantly fewer parameters and reduced training overhead. This efficiency is essential for real-time
robotics applications and resource-constrained platforms, while also simplifying adaptation to
new modalities without the need to train and maintain multiple distinct networks. Thus, the
shared design provides both performance and scalability benefits.

9. Translation and Rotation Equivariance/Invariance

We formalize these concepts in the context of global localization using a representation function
F that maps a scan S to a feature space.

Let Ss5: and S50 denote the scan translated by 6t and rotated by 46, respectively. Similarly, let
Fs¢ and Fsp represent the transformed feature outputs under translation and rotation. We de-
fine:

¢ Translation Equivariance: F(Ss;) = F(S5)s;. Translating the input scan results in a corre-
sponding translation in the feature representation.

¢ Rotation Equivariance: F(Ssg) = F(S5)s0. Rotating the input scan results in a correspond-
ing rotation in the feature representation.

¢ Translation Invariance: 7 (S5;) = F(S5). Translating the scan does not change the feature
representation.

¢ Rotation Invariance: 7 (S59) = F(S). Rotating the scan does not change the feature repre-
sentation.

As shown in Fig. D, even when the scan is rotated, the image set generated by polar-domain
multi-view generation remains unchanged. Consequently, after passing through the feature ex-
traction network G and the HOLMES module #, the resulting descriptors differ only in ordering,
but the descriptor set itself remains identical. Theoretically, as mentioned in the paper, an infi-
nite number of multi-views would be required, and aliasing may occur due to downsampling.
However, we demonstrate in Section IV that robust performance can be achieved with a limited
number of multi-views.

Furthermore, we summarize in Table 5 the equivariance and invariance properties of each com-
ponent (fres, fmultiview, CNN-based G, and HOLMES ), both before and after applying the polar
transform. Specifically, fmultiview 1S translation equivariant, and G is translation equivariant up
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Figure D: Even if the scan rotates, the descriptors just shift in order but come out identically.

Table 5: Properties of Equivariance and Invariance for Each Component. Here, R denotes Rotation, T denotes Translation,
Eq denotes Equivariance, and Inv denotes Invariance.

Sres Smutiview  CNN-based network G HOLMES H  Overall

Intrinsic property RT Eq T Eq T Eq (up to edge effects) T Inv T Inv
With fpo1qr transform* RT Eq REq R Eq (up to edge effects) R Inv R Inv

*Rotation in the Cartesian domain is identical to translation in the polar domain.

to edge effects. Since rotation in the Cartesian domain is equivalent to translation in the polar
domain, both modules can be regarded as rotation equivariant when combined with the polar
transform. Finally, due to the invariant properties of HOLMES H (e.g., summation and concate-
nation operations), the overall pipeline achieves rotation invariance.

(i) Rotation. A rigid rotation in the Cartesian plane corresponds to a cyclic shift along the azimuth in
polar (r, ). Our pipeline is designed to be invariant to this cyclic shift (hence rotation-invariant).
(ii) Translation. A Cartesian translation induces a position-dependent warp in (r,0) (not a global
shift). We therefore do not claim translation invariance/equivariance in the Cartesian sense; in-
stead, we intentionally keep translation variance to preserve place discriminability (cf. Sec . III-
E).

Let S : R2 - Rbeascanand S(r,0) = S(rcos#,r sin ) its polar image. For a rotation by 36,

Srot(r,0) = S(Rg; {T oS ‘)D = 5(r,0 — 50),

7 sin 6

so rotation becomes a cyclic azimuthal shift. On a discretized grid with W azimuth bins, this is a
column permutation T5 € RV *W,

Multi-view extraction and CNN feature extraction are equivariant to azimuthal shifts. Denote
the polar image by S € RZ*W . Our multi-view operator fiultiview €xtracts windows

M9 =8[;, aj : (a;+W,)] e REWo 5 =1, n,.
For a cyclic shift T, indices are shifted modulo W, hence
Jmuttiview (STs) = { ST;[:, (a] +W,)] }j = Ts fmultiview (S),

i.e., fmultiview 1S equivariant to azimuthal cyclic shifts.
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For the CNN G, with weight sharing and circular padding along 0, standard convolution is (dis-
crete) translation-equivariant along the azimuthal axis (up to boundary effects) [16]:

G(STs) = G(S)Ts (azimuthal shift-equivariance).

In practice, (i) we use circular padding along the azimuthal axis ¢, (ii) employ overlapping win-
dows (A < W,) with a sufficiently large n, to mitigate slicing artifacts, and (iii) the spatial
resolution becomes progressively lower as the network depth increases. These design choices
collectively reduce the impact of border effects, addressing the reviewer’s concern.

HOLMES is invariant to cyclic azimuthal shifts. Let F € RYV*€ be the spatially flattened feature
map. HOLMES computes scores S € RV*™ and an OT coupling R € RV*™ via Sinkhorn, then
aggregates

N
Vik =) Rix Fij.
=1

If the input is azimuthally shifted by a permutation II, then F/ = IIF. Since Sinkhorn is permutation-
equivariant [17], R’ = IIR. Therefore

Vj/,k:ZR;,kFi/ Z(HRzk (IIF); ZR i)k Friiyg = ZRMF@J— ik

i

Thus V' = V. GeM pooling and concatenation preserve invariance, so the descriptor is invariant
to azimuthal cyclic shifts (i.e., rotation-invariant).

Let a small Cartesian translation be As = (Az, Ay). For a point (z,y) = (r cos 0, rsin ),

Az +yAy Af ~

r Ay —yAzx
r ’ T '

2

Ar ~

This depends on (r, ), hence is not a global shift. Thus we do not enforce translation invari-
ance/equivariance; instead, we intentionally keep translation variance to preserve location speci-
ficity. G and fmultiview are equivariant to azimuthal cyclic shifts (Cartesian rotation), and HOLMES
is invariant to such shifts via OT-based aggregation. Cartesian translations induce warps in polar,
so we retain translation variance.
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